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Abstract. The Houtman-Maks index is a measure of the size of a violation
of utility maximizing (i.e., rational) behavior. This note introduces the Stata
command hmindex, which calculates the Houtman-Maks index for a data set of
prices and observed choices of a consumer. The command is illustrated with an
empirical application.
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1 Introduction

The hypothesis that economic agents choose commodity bundles by maximizing a utility
function subject to a budget constraint forms the core of neoclassical economics. Re-
vealed preference is an efficient tool to test whether consumer choice data satisfies utility
maximizing (i.e., rational) behavior.1 When these data violate utility maximization, it
is often desirable to know the “size” of the violation. Houtman and Maks (1985) propose
to measure the degree of inconsistency as the maximal number of observations in the
observed sample consistent with rational choice. This measure (the HM-index) is cal-
culated as the maximal subset of observations consistent with some revealed preference
axiom.2

This note introduces the Stata command hmindex, which calculates the HM-index
for a data set of prices and observed choice quantities sampled from an individual con-
sumer (or a cross-section of individuals). hmindex implements a combinatorial algorithm
proposed by Gross and Kaiser (1996) to calculate the HM-index for the weak general-
ized axiom of revealed preference (WGARP) and the weak axiom of revealed preference
(WARP), which we refer to as the GK-algorithm.

When the data consists of two goods, WGARP (WARP) is a necessary and sufficient
condition for the data to be (strictly) rationalized by a continuous, strictly increasing,
and (strictly) concave utility function. Thus, in such case, the HM-index gives the
maximal subset of observations that is consistent with rational choice. For data sets with

1. See Demetry et al. (2022) for a brief introduction to empirical revealed preference theory.
2. There exist several other goodness-of-fit measures for revealed preference tests. One of the most

prominent is the Afriat efficiency index (AEI) which is implemented in the command aei docu-
mented in Demetry et al. (2022). The HM-index is a more disaggregated goodness-of-fit measure
than the AEI since it gives a binary response to whether or not a specific observation is included
in the maximal subset consistent with revealed preference.
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more than two goods, WGARP and WARP are only necessary conditions for rationality,
since they do not account for transitive binary relations. Thus, for such data, the
HM-index gives an upper bound on the maximal subset of observations consistent with
rationality. However, in many multi-dimensional data sets violations of rationality seem
almost invariably also WGARP violations. That is, higher order insensitivities in the
data detected by more stringent tests are often associated with pairwise inconsistencies
that are detected by WGARP (Alston and Chalfant 1991). If so, the HM-index would
give the correct maximal subset consistent with rationality.

A feature of our command is that it allow the user to calculate the distribution of
the HM-index over uniformly random distributed data. We illustrate the command on
experimental data collected by Choi et al. (2007).

2 The GK-algorithm to calculate the HM-index

Suppose there are T observations of the prices and quantities of K ≥ 2 goods. At
observation t = 1, . . . , T , the prices and quantities are denoted by pt = (pt1, . . . , p

t
K)

and xt = (xt
1, . . . , x

t
K), respectively. We assume that all prices are strictly positive,

and that all quantities are non-negative (i.e., some but not all quantities at any given
observation may be equal to zero). The data set (pt,xt)t=1,...,T usually describes a
single consumer that is observed over time, but can also describe a cross-section of
consumers.3,4

For any pair of observations (t, s), we say that xt is directly revealed preferred to
xs, written xtRDxs, if pt · xt ≥ pt · xs. This means that xt is chosen even though the
cost of the bundle xs (at prices pt) does not exceed pt · xt. For all x ∈ RK

+ and any
t = 1, . . . , T such that pt ·xt ≥ pt ·x, the data (pt,xt)t=1,...,T is rationalized by a utility

function u if u(xt) ≥ u(x), and strictly rationalized if u(xt) > u(x) whenever x 6= xt.

A data set (pt,xt)t=1,...,T satisfies the weak generalized axiom of revealed preference,

abbreviated WGARP, if xtRDxs implies ps · xs ≤ ps · xt.

When the data consists of only two goods, it is well-known that WGARP is a
necessary and sufficient condition for a data set to be rationalized by a continuous,
strictly increasing, and concave utility function (see Banerjee and Murphy, 2006, in
combination with Varian, 1982).

When the data consists of more than two goods, Aguiar et al. (2020) shows that
WGARP (WARP) is a necessary and sufficient condition for a data set to be (strictly)
rationalized by a continuous, strictly increasing, piecewise (strictly) concave, and skew-
symmetric preference function.5

3. If the data forms a cross-section then the problem of calculating the maximal subset of the data
consistent with revealed preference can be thought of as a problem of finding the maximal number
of consumers that share a common utility function (i.e., the same preferences).

4. The following brief discussion of rationalizability, WGARP and WARP draws on Demetry et al.
(2022).

5. See Aguiar et al. (2020) for the definition of a preference function and the relevant properties
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A data set (pt,xt)t=1,...,T satisfies the weak axiom of revealed preference, abbreviated

WARP, if xtRDxs implies ps · xs < ps · xt whenever xt 6= xs.

In the two-dimensional case, WARP is a necessary and sufficient condition for a data
set to be strictly rationalized by a continuous, strictly increasing, and strictly concave
utility function (See Rose (1958) in combination with Matzkin and Richter (1991)). The
difference between WGARP and WARP in economic terms is that WGARP allows for
indifference between bundles. In other words, while WGARP accommodates demand
correspondences, WARP is only consistent with demand functions.

The HM-index is defined as the maximal subset of observations from the data
(pt,xt)t=1,...,T such that WGARP or WARP holds.6 All observations that are removed
from the data form the violator set (VS), while the remaining observations satisfying
WGARP/WARP form the consistent set (CS). The value of the HM-index is usually
presented as either: (i) the number of observations in CS, i.e., the maximal number of
observations satisfying WGARP or WARP, or (ii) the fraction of observations in CS,
i.e., the number of observations in CS divided by the total number of observations in
the data.

To calculate the HM-index, Gross and Kaiser (1996) use a graph-theoretic approach.7

Every observation is interpreted as a node of a graph. If observations s and t form a
violation of WGARP, then the nodes for s and t are adjacent. The degree of a node t,
degr(t), is the number of nodes to which it is adjacent. Define At as the set of nodes
adjacent to node t, and 1At as the set of nodes which are adjacent to t with degree 1.
The GK-algorithm consists of two parts:

Step 1: Whenever degr(t) = maxs=1,...,T degr(s) and degr(r) < degr(t) for all r ∈ At,
then remove observation t.

Step 2: Whenever degr(t) = degr(i) = maxs=1,...,T degr(s) and i ∈ At, then (a) if
1At = ∅, remove observation t; (b) if 1Ai = ∅, remove observation i, and (c) if
1At = 1Ai = ∅, remove either t or i.

Steps 1 and 2 are repeated sequentially until no additional observation is removed.
Heufer and Hjertstrand (2015) suggested to use the GK-algorithm for WGARP. Gross
and Kaiser (1996) originally suggested to use the algorithm for WARP, which only
requires redefining adjacency. If two nodes, t and s, are defined as adjacent whenever t
and s form a violation of WARP, then the GK-algorithm will provide the set of indices
consistent with WARP.

Gross and Kaiser (1996) point out that the algorithm may remove additional obser-
vations, in which case it only produces a lower bound and not an exact solution to the

pertaining to preference functions.
6. Strictly speaking, the HM-index is defined as the maximal subset of observations such that some

revealed preference axiom holds. But since we are only concerned with WGARP or WARP, we
only consider the more narrow definition stated here.

7. The standard way of calculating the HM-index in empirical applications has been to iteratively
delete observations and test for revealed preference. However, even for relatively small data sets,
this can be very computationally demanding and sometimes even practically unfeasible.
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HM-index. However, they also argue, based on experimental evidence, that this should
occur very rarely.

As a benchmark to rational choice, empirical applications of the HM-index using
experimental data sometimes compare the distribution of the HM-index across all sub-
jects with the distribution of the HM-index under the assumption of uniformly random
consumption behavior. hmindex allows the user to calculate the empirical distribution
of the HM-index under this type of irrational consumer behavior, by drawing uniformly
random data as explained in Section 2.4 of Demetry et al. (2022) and, for every sim-
ulated data set, calculate the HM-index. The distribution can then be visualized by
plotting the values of the HM-index in a kernel density plot (See Figure 2 in Section 4
for such an application to experimental data).

3 hmindex

hmindex is available on SSC and can be installed by entering ‘SSC install hmindex’ in
the Stata command prompt.

Syntax

hmindex, price(string) quantity(string)
[
axiom(string) distribution

simulations(#) seed(#)
]

price(string) specifies a T × K price matrix, where each row corresponds to an ob-
servation t and the columns correspond to the goods. All prices are required to be
strictly positive. If any of the elements in the price matrix are non-positive (or if
the price and quantity matrices have different dimensions), the command returns an
error message.

quantity(string) specifies a T ×K quantity matrix, where each row corresponds to an
observation t and the columns correspond to the goods. All quantities are required to
be non-negative. Some (but not all) quantities at a given observation may be equal
to zero. If the quantity matrix violates these conditions (or if the price and quantity
matrices have different dimensions), the command returns an error message.

Options

axiom(string) specifies the axiom(s) that the user would like to apply. The default
option is axiom(WGARP). The user can apply WARP by specifying axiom(WARP).
The user may also apply both axioms simultaneously by specifying axiom(all).

distribution specifies whether the user would like to calculate the empirical distribu-
tion of the HM-index under uniformly random consumption behavior. This produces
an output table with the mean (Mean), standard deviation (Std. Dev.), minimum
(Min), first quartile (Q1), median (Median), third quartile (Q3), and maximum
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(Max) over all simulated data. The simulated uniformly random data are calculated
as explained in Sections 2.4 and 3.3 of Demetry et al. (2022). The user can set
the number of simulations and the random seed in the simulation of the uniformly
random data (See the next two options). The default option is that distribution

is not specified.

simulations(#) specifies the number of repetitions of the simulated uniformly random
data sets. The default number of repetitions is simulations(1000). This option is
only useful in combination with the distribution option.

seed(#) specifies the random seed in generation of uniformly random data sets (See
Sections 2.3 and 3.3 of Demetry et al. (2022) for a detailed explanation). The default
random seed is seed(12345). This option is only useful in combination with the
distribution option.

Stored results

hmindex stores the following in r():

Scalars
r(OBS) number of observations
r(GOODS) number of goods
r(HM NUM axiom) maximal number of observations that satisfy the axiom. Given

by #HM in the output
r(HM FRAC axiom) maximal fraction of observations that satisfy the axiom. Given

by %HM in the output and calculated as %HM = #HM/T

Macros
r(AXIOM) axiom or axioms being tested

Matrices
r(INDICATOR axiom) returns a T -dimensional binary array indicating whether the ob-

servation is in the consistent set (1) or violator set (0)
r(OBSDROP axiom) returns the list of observations in the violator set, i.e., what ob-

servations that are dropped from the data set
r(CS price axiom) returns the price matrix in the consistent set for the specified

axiom, i.e., the price data corresponding to the goods in CS
r(CS quantity axiom) returns the quantity matrix in the consistent for the specified

axiom, i.e., the quantity data corresponding to the goods in CS
r(VS price axiom) returns the price matrix in the violator set for the specified ax-

iom,, i.e., the price data corresponding to the goods in VS
r(VS quantity axiom) returns the quantity matrix in the violator set for the specified

axiom,, i.e., the quantity data corresponding to the goods in VS
r(SUMSTATS axiom) summary statistics for random data: number and fraction of

observations in consistent set
r(SIMRESULTS axiom) number and fraction of observations in consistent set for every

simulated uniformly random data set

Examples

The following two examples illustrate hmindex using a data set of 20 observations on
the prices and quantities of two goods. The consumed quantities of goods 1 and 2 are
x1 and x2, which form the quantity matrix X=(x1,x2). The corresponding price matrix
with prices p1 and p2 of the two goods is P=(p1,p2). The first example runs hmindex
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using its default options, i.e., for WGARP.

. use "hmindex_example_data.dta", clear

. mkmat x1 x2, matrix(X)

. mkmat p1 p2, matrix(P)

. hmindex, price(P) quantity(X)

Number of obs = 20
Number of goods = 2

Axiom #HM %HM

WGARP 15 .75

We see that the HM-index is 0.75 (or 15 in absolute terms), which implies that 25%
of the observations would have to be removed from the original data set in order for the
data to be rationalizable by WGARP. The second example runs hmindex for WARP
with the distribution option using 1, 000 simulations.

. hmindex, price(P) quantity(X) ax(warp) dist sim(1000)

Number of obs = 20
Number of goods = 2
Simulations = 1000

Axiom #HM %HM

WARP 15 .75

Summary statistics for simulations:

WARP #HM %HM

Mean 15.809 .79045
Std. Dev. 1.510232 .0755116

Min 11 .55
Q1 15 .75

Median 16 .8
Q3 17 .85
Max 20 1

The first output table shows that applying WARP gives the same value of the HM-
index. The second table shows that if consumption behavior were uniformly random —
which in this case is a proxy for irrational behavior — then the HM-index is slightly
higher with a median value of 16 over all simulations. This would suggest that the con-
sumption behavior displayed through the choices in the data is slightly more irrational
than uniformly random consumption behavior.
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4 Empirical illustration

We applied hmindex to experimental data collected by Choi et al. (2007). These data
consist of portfolio choice allocations in a two-dimensional setting from 93 experimental
subjects over 50 decision rounds, i.e., T = 50. Each subject split her budget between
two Arrow-Debreu securities, with each security paying 1 token if the corresponding
state was realized, and 0 otherwise. The experiment consisted of two treatments. In
the first (symmetric) treatment with 47 subjects, each state of the world occurred with
probability 1/2, which was objectively known to the subjects. The second (asymmetric)
treatment was applied to 46 subjects, where the subjects faced states occurring with
objective probabilities 1/3 and 2/3. All state prices were randomly chosen and varied
across all decision rounds and subjects.

20
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1 10 20 30 40 50 60 70 80 90
Subject

Actual HM-index
Mean HM-index for simulated uniformly random data

Figure 1: Calculated HM-indices from actual choices (red-colored triangle markers) and
from simulated uniformly random data. The connected intervals give the maximum and
minimum values of the HM-index calculated from the simulated data while the black
dots refer to the mean HM-index over the simulated data

Choi et al. (2007) reported the HM-index for all but six subjects which they were
unable to find an optimal solution for. Using hmindex, we calculated the HM-index for
WGARP for everyone of the 93 subjects including the six unreported subjects in Choi
et al. (2007). For every subject, the following code calculates (and saves to the matrix
results) the actual HM-index and the mean, minimum and maximum HM-indices over
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all simulations in the uniformly random data.

matrix results = J(93,4,0)
matrix colnames results = "HM" "Mean" "Min" "Max"

forvalues subject = 1/93 {

quietly hmindex, price(P`subject´) quantity(X`subject´) dist sim(1000)

matrix sumstats = r(SUMSTATS_WGARP)

matrix results[`subject´, 1] = r(HM_NUM_WGARP) /* Actual HM */
matrix results[`subject´, 2] = sumstats[1, 1] /* Mean */
matrix results[`subject´, 3] = sumstats[3, 1] /* Min */
matrix results[`subject´, 4] = sumstats[7, 1] /* Max */

}

Figure 1 presents these results.8 The red-colored triangle markers represent the
calculated HM-index for each subject. The connected intervals give the maximum and
minimum values of the HM-index calculated from the simulated uniformly random data,
while the black dots give the mean HM-index calculated over all simulations. We find
that 77 subjects have a HM-index of 45 or higher (i.e., %HM ≥ 0.9), 14 subjects have
values between 40 and 44 (i.e., 0.8 ≤ %HM < 0.9), and 2 subjects have values below
40 (i.e., %HM < 0.8). Moreover, of all 93 subjects, the HM-indices from 6 of them are
lower than the maximum HM-indices calculated from the simulated uniformly random
data sets, which may cast doubt on whether the actual choices from these subjects are
rational.

In Figure 2, we plot the kernel cumulative distribution functions (left) and probabil-
ity distribution functions (right) of the HM-indices calculated from the subjects’ actual
choices (93 observations, solid line) and the HM-indices from the simulated uniformly
random data (93 × 1, 000 = 93, 000 observations, dashed line). Overall, these results
show that the actual choices are more consistent with rational choice than uniformly
random choices.

Finally, we note that hmindex runs very quick: It found a solution for every subject
in at most 0.053 seconds. The mean running time over all subjects was 0.029 seconds
with a standard deviation of 0.007 seconds.

5 Conclusions

In this note, we presented the command hmindex, which is an implementation of the
Houtman-Maks index, and gives a measure of how “close” consumer demand data are to
satisfying utility maximizing behavior. The command is formulated as a combinatorial
algorithm, and therefore converges in a finite number of steps. Consequently, hmindex
can be implemented on rather large data sets. A natural extension for future work is to
provide implementations of other disaggregated measures of goodness of fit for revealed

8. The help-file accompanying hmindex contains the code to generate Figure 1.
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Figure 2: Left: Kernel cumulative distribution functions of HM-indices from actual
choices (solid line) and from simulated uniformly random data (dashed line) over all
subjects. The kernel cdfs were generated using the kdensity package in Stata. Right:
Kernel probability densities of HM-indices from actual choices (solid line) and from
simulated uniformly random data (dashed line) over all subjects. The kernel pdfs were
generated using the kdens package in Stata with the reflection option (since the HM-
index is a bounded variable between 1 and 50). kdens is documented in Jann (2008)
and is available on SSC (Note that kdens needs to be installed prior to using it)

preference tests. Some examples of such measures can be formulated as (mixed-integer)
linear programming problems, whose computational complexity strongly depends on
the algorithms used. Thus, in practice, solving such problems may not be a trivial task.
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